Jump to content

The gravitational constant


aum

Recommended Posts

Cavendish.jpg

Henry Cavendish.

 

Any mass warps the fabric of space-time around itself. The more the mass, the more the warping. The force that an object feels when travelling along this warped path is called gravity. It tends to move the object towards the mass.

 

The strength of this force depends on the gravitational constant. Denoted by a ‘G’, it is a fundamental physical constant. It was first accurately determined by Henry Cavendish in 1797. G is an essential component of both Isaac Newton’s law of universal gravitation and Albert Einstein’s theory of general relativity.

 

In Newton’s theory, the gravitational force between two objects is directly proportional to the product of their masses and inversely proportional to the square of the distance between them. G is the proportionality constant.

 

In Einstein’s theory of general relativity, G appears in the equations that describe the curvature (or the ‘warping’) of spacetime in the presence of mass and energy. This theory provides a more accurate description of gravitation, particularly in extreme conditions, such as near massive celestial objects.

 

The precise value of G is crucial to understand celestial mechanics and to determine the mass of celestial bodies. Yet its value has been determined only with an uncertainty of about 22 parts per million. Its precise determination remains a topic of ongoing research in the field of experimental physics.

 

Source

Link to comment
Share on other sites


  • Views 498
  • Created
  • Last Reply

Top Posters In This Topic

  • aum

    1

Popular Days

Top Posters In This Topic

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Recently Browsing   0 members

    • No registered users viewing this page.
×
×
  • Create New...